
-

-

-

"Putting on The Squeeze"
by David Goben
28 Monticello St, Willimantic, CT 06226-1325

SYSTEM REQUIREMENTS:
Model 4/4P/4D
1-Disk, 64K
TRSDOS/LS-DOS 6 BASIC

If you would like to make your Model 4 BASIC programs run faster, more compact, or easier
to edit, then this program is for you. It's called PACK4, and it will quickly become one
of the most valuable utilities in your BASIC programming toolbox.

Most serious BASIC programmers keep a set of program development utilities that make
writing their programs much easier and also make them operate at peak efficiency.
Probably the most famous of these utilities is a renumbering program, which is by now as
common-place as BASIC itself, and is supplied with most BASIC interpreter packages.
Without it, inserting large sections of new information between program lines can
sometimes become quite an arduous task. Other popular utilities include programs to move
or copy a block of lines from one place to another, or a cross-reference utility to keep
track of line references, variables, and BASIC keywords. The Enhanced BASIC included with
LSI's LS-DOS 6.3 contains all of these valuable features. But it lacks the much-needed
compression, expansion, and packing utilities. PACK4 fills this void.

USING PACK4

To use PACK4/CMD, you must work from the DOS
BASIC file to work with.

level (TRSDOS Ready). You must also have a

For example, if you saved a program to disk as SAMPLE/BAS via the BASIC command
SAVE"SAMPLE/BAS", you could pack it using the DOS command PACK4 SAMPLE/BAS TEST/BAS. Where
PACK4 is the main command, SAMPLE/BAS is the file that you wish to have packed, and
TEST/BAS is the file that you wish the new format to be written to. You could also use
PACK4 SAMPLE/BAS SAMPLE/BAS to write the new format over the top of the source file, but
you may want to make a backup copy of SAMPLE/BAS first. You can also add drive
specifications and passwords if you desire.

When you press the ENTER key, a sign-on message will be displayed. PACK4 will load
SAMPLE/BAS into memory and will display its current byte-length and processing will begin.
PACK4 takes approximately 1.2 seconds to process each lK of program data. When processing
is complete a new byte-length will be displayed and the destinatio~ file TEST/BAS is
written. If all goes well a report of success is given and control is returned to DOS.

You may want to go into BASIC and examine the new format of TEST/BAS against that of the
original SAMPLE/BAS program.

NOTE: DO NOT use PACK4 on a program that has been saved in ASCII format, it won't work!

USING PARAMETERS WITH PACK4

You can also use parameters to tell PACK4 exactly what you want done. The parameters are:

-

-

-

P = PACK. This is the default condition, but must be included if you also
parameter, and desire the packing feature. Packing combines multiple
single lines. All remarks are removed unless the "*" parameter is
Parameter "C" is assumed.

2

specify another
statements onto
also specified.

U = UNPACK (expand). This feature is the opposite of PACK in that it expands the program
so that statements occupy individual lines. All remarks are removed unless the "*"
parameter is also specified. Parameter "C" is assumed.

C = COMPRESS. This removes extra spaces and linefeeds (except inside strings and remarks)
from a program. This is a default condition of the "P", "U" and "*" parameters. All
remarks will be removed. This parameter is usually used by itself.

*=Retain remarks. This causes all remarks lines to remain intact. Parameter "C" is
assumed.

L=nnnn = Set starting line number. Parameters "P" and "U" will renumber a program starting
the new file with line 10 and an increment of 10. This parameter allows you to change the
starting line number to a value other than 10, such as 100.

I=nnnn = Set increment. This allows you to change the line increment during "P" or "U"
operations to a value other than 10.

Parameters are entered inside parenthesis, following the destination file, in the format
PACK4 sourcefile destfile (parameters). Note that all shown spaces are required.
Parameters may OPTIONALLY be separated by spaces and/or commas.

If no parameters are given, then "P" (pack) is assumed.

SAMPLE PARAMETERS

(P*)
(*)

(u)

(C)

(P,L=lOO)

Compress and pack a file, and retain all remarks lines.
Compress a file and retain all remarks lines (no pack or unpack).
Unpack a program and remove all remarks.
Compress a program and remove remarks (no pack or unpack).
Compress and pack a file, remove all remarks, and start

renumbering with line 100.
(U,I=l,L=l,*) Compress and unpack a program, retain remarks, and start line

renumbering from line l, with an increment of 1.

Note that compression is a condition that is used at all times. The "C" parameter was
provided so that you could compress a program and also remove remarks without PACK4 re­
arranging the program structure (combining or separating program statements). Including
the "C" parameter with other parameters is redundant, but is acceptable:

Parameters can be entered in any order.

If by chance you use the "P" and "U" parameters together, "P" will take precedence.

PACK4 DEFAULT FEATURES

PACK4 features program compression as a default service. It does this even during
expansion, since the Model 4 BASIC listing feature will automatically display spaces in

3

the proper places in the monitor/printer listing, thus maintaining a line's readability.
The Model I and III compressions via the CMD"C" option will not process listings this way,
but will appear to merge one keyword right into the next one.

- PACK4 will remove all remarks that are located at the end of lines that contain executable
statements. This was done to allow for possible merging of a statement in the next line
during a pack operation. If these type of remarks were retained, then the packing feature
would have been severely hindered, since executable statements cannot follow a comment on
a line.

-

-

PACK4 will also, unless told otherwise, remove all remarks lines. If you choose to retain
the remarks lines in your programs, then any occurrence of the apostrophy-type remark
("'") will be converted to a REM-type remark. This is done because a REM token will take
up only one byte of memory space, whereas the apostrophy actually uses a 3-byte sequence
of tokens: a colon (":"), a REM token, and an apostrophy token. However, during a listing
only the apostrophy will be displayed (much like the ELSE token mentioned earlier).
Changing it to an individual REM token will save the program 2 bytes for each remark line
encountered.

Whether you choose to keep or remove your remarks lines, PACK4 will also employ another
default feature concerning remarks: it will repoint all line references (from GOTOs,
GOSUBs, etc.) that point to a remark line down to an actual executable line. For example,
in the following sample 3-line program,

10 REM TEST PROGRAM
20 REM TEST TRANSFER
30 GOTO 10

the GOTO 10 in line 30 will be changed to a GOTO 30 by PACK4, even if you choose to retain
remarks and not alter the statement arrangement in your program. This way if you or PACK4
later delete remark lines 10 and 20, the program will still operate correctly. For many
people, this feature alone is worth the trouble of obtaining the entire PACK4 package.

Another default feature during packing is the removal of GOTO tokens after a THEN token.
In the statement IF A=B THEN GOTO 40, the GOTO token is not actually necessary, and so the
statement will be reduced to IF A=B THEN 40. During an expansion (unpack), the opposite is
given: ff a line reference follows a THEN token, then a GOTO token will be automatically
inserted before the line number if a GOTO token does not already exist there.

Automatic line renumbering after an expansion or pack is also a default feature of PACK4.
This way you do not have to worry about insuring that there is an appropriate increment
between each line. For example, an expansion of the lines:

1 CLS:PRINT"HELLO"
2 END

would be expanded to:

CLS
2 PRINT"HELLO"
3 END

4

The rest of this document describes the features of PACK4 in more detail and the
techniques used.

-PROGRAM COMPRESSION

Program compression is the process of removing unnecessary remarks, spaces and linefeeds
from a program (the same procedure as CMD"C" on most Model I and III disk BASICs).
Everyone who has ever written a workable program in BASIC on the Model 4 knows that you
must separate all keywords and variables with a space or a syntax-allowed special
character. This allows the BASIC interpreter to recognize the individual keywords that it
will need to properly execute the program. What many people do not realize is that BASIC
stores each of these keywords as one- or two-byte tokens in memory to save both space and
execution time. An aspect of this process that most people are not aware of is that the
extra spaces are no longer necessary after BASIC has tokenized the program, but are NOT
removed during the tokenization process (contrary to what many people have previously
claimed). But if you had the capability, they could be removed without affecting the
program's operation.

Once these spaces have been removed (and you may be surprised at how many of these spaces
actually exist in any given program), your program will execute faster since the
interpreter would not have to waste its time skipping over them every time it runs into
one. But even with all of these spaces removed, if you afterward listed a line, BASIC
would automatically add any needed spaces into the LISTed lines sent to the monitor or
printer for the sake of maintaining program readability (The actual program line itself
will not be affected by these display-only modifications).

For example, the program statement PRINT ERL is stored in memory as 91 20 D7 in hex
A (hexidecimal) notation, where 91 is the token for PRINT, 20 is a SPACE character, and D7
Wis the ERL token. If the SPACE (20 hex) was removed from the statement, creating a shorter

91 07 byte sequence, a listing of the statement will still SHOW a space between PRINT and
ERL, even though the actual line no longer contains it.

There is only one exception to this compression process, which PACK4 will take care of
effortlessly. This has to do with the ELSE statement. When ELSE is tokenized, it is stored
in tokenized format with a leading statement separator (a colon ":"), which is invisible
during a program listing. The problem is that if the space in front of the ELSE token
(technically in front of the leading colon) is removed, and the previous 'token' was a
BASIC keyword or a non-typed variable (such as variable XY as opposed to XY$), then the
previous token and ELSE will APPEAR to be merged. A case in point is the program line IF
LP THEN LPRINT XY ELSE PRINT XY. If the space between the variable "XY" and (:)ELSE is
removed, a listing will show these tokens as XYELSE, even though the program will still
execute properly since internally a colon still exists between XY and E~SE. However, if
you edit the line (a literal modification of its listed, ASCII format), or ASCII-save the
line (a literal disk-save of its listed, ASCII format) and then reload it, a syntax error
will be reported during a subsequent run because XYELSE wil_l have been reinterpreted as a
single token (a variable in this case) rather than a separate variable and a token (The
BASIC interpreter LITERALLY translates the ASCII file when loading it).

To allow for this possibility, PACK4 will insure that a space will always precede any
(:) ELSE token.

Some programmers have claimed that a space is mandatory after the "AS" token in a FIELD
statement, such as in the statement FIELD 1,2 AS A$. This was true for earlier versions of

-BASIC, like that for the Model I and III, but not with the Model 4 version. This version

5

will automatically take this compression factor into account, and so the space requirement
is no longer a necessary rule. Therefore compressing the statement to FIELD 1,2ASA$ will
NOT interpret ASA$ as a single variable, but as "A$" preceded by the "AS" token. Of course

-this allowance is only provided for in the FIELD statement, and nowhere else.

PROGRAM EXPANSION

Program expansion is an often highly desired capability, especially in the course of the
debugging process. This feature involves placing each individual statement onto a separate
line. For example, the line 10 CLS:PRINT"HELLO":END, would be expanded (and accordingly
renumbered) by PACK4 into:

10 CLS
20 PRINT"HELLO"
30 END

By expanding a program and then running it, if an error
program's operation, the programmer can instantly narrow
statement on the reported error line.

occurs during the course of the
the problem down to the program

Another advantage of program expansion is when you need to insert additional program
statements in the middle of a multi-statement line (a line with more than one command on
it). By first expanding the program, you can separate each statement onto separate lines
and therefore place your new statements in their proper places with ease and without
having to worry about moving other statements to other lines to make room for the new
logic. Once the new insertions are completed, you can pack the program back together by
letting PACK4 do the work for you by utilizing its packing feature.

- An exception to the expansion process, which PACK4 also handles effortlessly, is when
program logic requires multiple statements to remain on an individual line, such as is the
case for IF-THEN and IF-THEN-ELSE constructs. And example is with the line: 10 IF A=B THEN
X=Y:Z=T ELSE Z=Y:X=T. Placing each of these statements onto separate lines will cause
chaos without the insertion of additional program logic, such as GOTOs after the Z=T and
X=T statements, so that they will leapfrog to the correct trailing statements for the
continuation of the proper logic. It ts usually best to leave this type of structure
intact and unaltered.

-

PROGRAM PACKING

Program packing is the opposite of expansion. It is also the main .feature of the package,
of which compression and expansion are only consequences (a packing procedure first
involves expanding the program, and then packing and compressing it back.together).

Program packing can be exemplified thus: the three lines unpacked previously in the
expansion example will once again be combined into one line _by the packing feature. What a
packer does is to basically join each consecutive program statement together with the
previous statJment until one of four situations are encountered:

1) The line length limit is reached. If the appending of a new statement will cause the
255-byte line length (expanded, listing-type display length) of the current line to be
exceeded, then the building of the current line will be ended and a new line will be
initiated.

-

-

-

6

2) The new statement's line number is referenced by a GOTO, GOSUB, RESUME, etc. When a
line such as this is encountered, then a new line is automatically begun to prevent the
program's logic-flow from being violated.

3) An IF-THEN program construct is encountered. If this is found, the line will, if it
will fit, be the final information appended onto the current line. If it will not fit,
then the current line will be closed up and the new IF-THEN data will occupy its own line
following it.

4) The current line is a remark line. A new line will immediately be initiated which will
contain the remark. However, if the remarks are to be removed, then the remark line will
be completely ignored.

A situation that would normally spell trouble for a packer is when a line ends with a
string that does not contain a closing quotation mark. This is normally a legal and
acceptable practice when the string is the last statement on a line. However, this would
wreck havoc on a program if subsequent statements are later appended to the line.
Therefore PACK4 will insure that all quoted strings are terminated with a quote by
automatically appending one to any that do not already contain one.

TECHNICAL NOTES

The compression and packing process of
relatively short programs, and thousands
program that is too large to run under
than that of TRSDOS 6.2's), but will run
program small enough to operate in it.

PACK4 will save you hundreds of bytes on even
on large ones. For example, if you have a BASIC
LS-DOS 6.3 BASIC (this BASIC's buffer is smaller

under TRSDOS 6.2 BASIC, then PACK4 will make the

When a program is packed, it is FIRST unpacked (just like using the "U" parameter). It is
also renumbered before the actual packing process is begun, to insure that all new lines
will contain valid line numbers. It is then re-packed into a tighter space and renumbered
again.

When a program is renumbered, if the new line number exceeds BASIC upper number limit of
65529, then this error will be reported, and a program abort will occur.

When you use PACK4, the source BASIC program cannot be an ASCII-saved file (saved with the
",A" option) or a protected-saved file (saved with the ",P" option), but must be a file
saved by the standard BASIC SAVE procedure.

Please note that if you ASCII-save a previously packed file, the spaces that will be
displayed during a LIST from DOS will also be sent to the disk file (an ASCII-save is
simply a normal listing routed to a disk file). Thus when you reload it, as the BASIC
interpreter re-tokenizes the file from ASCII into a workable BASIC program, the extra
spaces will also be inserted into the new tokenized code. This means you must re--pack the
file if you do not want the spaces.

If you edit a line, the spaces that will be displayed in a listing of the edited line will
also be inserted into the actual line once the edit is completed, since an edited line is
reinterpreted just like a line from an ASCII-saved file; as though it were freshly keyed
in.

David Goben is a programming consultant, and an associate editor to 80 Micro.

